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Abstract. Digital signatures are widely used to assure authenticity and
integrity of messages (including blockchain transactions). This assurance
is based on assumption that the private signing key is kept secret, which
may be exposed or compromised without being detected in the real world.
Many schemes have been proposed to mitigate this problem, but most
schemes are not compatible with widely used digital signature standards
and do not help detect private key exposures. In this paper, we propose
a Key Compromise Resilient Signature (KCRS) system, which leverages
blockchain to detect key compromises and mitigate the consequences.
Our solution keeps a log of valid certificates and digital signatures that
have been issued on the blockchain, which can deter the abuse of com-
promised private keys. Since the blockchain is an open system, KCRS
also provides a privacy protection mechanism to prevent the public from
learning the relationship between signatures. We present a theoretical
framework for the security of the system and a provably-secure construc-
tion. We also implement a prototype of KCRS and conduct experiments
to demonstrate its practicability.

Keywords: Digital signature + Key Compromise Resilient -
Blockchain - Privacy - Exposure detection

1 Introduction

Digital signatures can assure the authenticity and integrity of messages and play
a critical role in many applications, while assuming that the private signing key
is kept secret. In the real world, it is difficult to assure the security of private
signing keys because the system storing the private signing key can be compro-
mised. This has motivated a sequence of studies on mitigating the damages of
key compromises, such as [1,4,6,7,9-11,13,16,18-20,26-30]. Even if a private
signing key is not compromised, an attacker still can exploit its service to obtain
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legitimate digital signatures [24,31]. Advanced cryptographic mechanisms, such
as forward secure digital signatures [1,4,20], key-insulated public key cryptosys-
tems [12-14], and intrusion-resilient schemes [19], can mitigate the damages of
private signing key compromises. However, they are not compatible with existing
digital signature standards and cannot detect key compromises.

On the other hand, the Certificate Transparency (CT) framework [22] has
been proposed for monitoring and auditing TLS/SSL certificates with a cryp-
tographically assured, publicly auditable, append-only certificate log. Although
this approach is compatible to existing standards and can detect key compro-
mises, it lacks the recovery capability for the compromised certificates. Recent
work [2,25] has resorted to blockchain for addressing the aforementioned chal-
lenges, due to its salient features such as immutability and tamper detec-
tion. This approach is reminiscent of earlier studies on managing digital sig-
natures [17,31]. However, these digital signature management systems expose
users’ behavior to the public, thereby raising privacy concerns.

In this paper, we propose a privacy-enhanced Key Compromise Resilient
Signature framework, or KCRS for short, by leveraging a blockchain to enable
privacy-preserving key compromise detection, invalid signature revocation, and
key update. KCRS supports standardized digital signature schemes and utilizes
a dual key strategy with a “signing” key pair for message authentication and
a “master” key pair for signature linkage. In KCRS, both valid public keys
and generated signatures are stored on the blockchain, which allows a user to
easily detect a compromised signing key by monitoring blockchain records and
act promptly. One-time signature and encryption are employed to protect users’
privacy, such as the messages they signed and the pattern of their signature
generations. A prototype implementation of KCRS using Hyperledger Fabric [3]
demonstrates its effectiveness and efficiency in practice.

This paper is organized as follows. Section 2 describes the KCRS framework
and its security model. Section 3 presents a concrete construction of KCRS and
its security analysis. Section 4 describes the integration of KCRS with blockchain.
Section 5 discusses the implementation of KCRS and evaluates its performance.
Section 6 concludes the paper.

2 The KCRS Framework and Security Model

2.1 The KCRS Framework

A KCRS scheme consists of the following six algorithms:

Initialization. The following algorithm is used to initialize KCRS.

— Setup (A) — pp. The algorithm Setup takes the security parameter A as input,
and outputs the public parameters that are used by other algorithms.

Master Key Initialization. The following algorithm is used by a user (signer
or verifier) to get his/her first key pair and register to KCRS.
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— MKGen (pp) — (pku, skar). MKGen takes the public parameters pp as input,
and outputs a master public/private key pair (pkas, skar), where pkys also
serves as the identity of its owner.

Signing Key Pair Generation. The following algorithms are used by a signer
to select a signing public/private key pair.

— SPKGen (pp,pkar) — (pks,auz). Given a master public key pkys and the
public parameters pp, the algorithm SKGen returns a randomly selected sign-
ing public key pkg and related auxiliary information auz.

— SSKGen (pp, pks,aux, sk, pkar) — sks. The algorithm is deterministic and
takes the public parameters pp, the generated signing public key pkg with
auxiliary information auz, and master public/private key pair (skas,pkar)
as inputs. It returns a signing private key skg, which is used to generate
signatures that can be verified by pkg.

Signing Key Pair Detection. The following deterministic algorithm is used
by a signer to check whether a given signing public key is generated using his/her
master public/private key pairing information.

— SKDetect (pp, sk, pkar, pks) — 6. If pkg is generated using skp; and pkjy,
the algorithm returns 1; otherwise, it returns 0.

Signature Algorithm. The following two algorithms are used to gener-
ate/verify digital signatures.

— SigGen (pp, skg,m) — o pky- The function SigGen generates signature of
m using signing private key skg.

— SigVerify (pp, Om pks,m, Pks) — . The algorithm SigVerify returns 6 = 1 if
the signature sigm, pig is valid with respect to message m and public key pks;
otherwise, it returns 6 = 0.

Link Verification. The following algorithm is used for one to establish the
connection between a signature and its signer.

— LNK (pp,o,m,pky) — 9. This is a deterministic algorithm that allows one
to check whether the signer of o is the owner of pkj;.

For a signature scheme, we usually assume both the message and the signature
are in public. As a result, everyone can use LNK to recover the signer’s identity.
In the concrete construction of KCRS, we demonstrate how to limit this linking
capability to the designated signature verifier via encryption.

2.2 Security Definitions of KCRS

Correctness. This means that a KCRS scheme works normally when the signer
and verifier are honest. Specifically, (i) the signer can generate signing key pairs
and sign messages that can be accepted by a verifier; (ii) if the signer sees a
public signing key that is derived from her/his master public key, he/she can
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detect it; and (iii) for a targeted signature verifier, he/she can check whether a
signature is related to a master public key or not.

Signature Unforgeability. This means that only the one who knows the sign-
ing private key can generate a valid signature, dubbed existential unforgeability
under adaptive chosen-message attacks (EUF-CMA).

Definition 1 (EUF-CMA [15]). A KCRS scheme is EUF-CMA secure if the
probability attacker A wins the following game is negligible in security parameter A:

1. The challenger C generates a pair of public/private key pair (pks, sks) using
the public parameter pp, and gives pk to the adversary A.

2. A queries C for signatures o1,...,04 on adaptively chosen messages
mi,..., My, respectively.

3. A produces a pair of message and signature (m*,c*). If m* is not queried in
a previous step and o* is a valid signature of m*, then A succeeds.

Note that KCRS has two pairs of public/private keys, but only the signing key
pair is used for digital signature operations.

Signing Private Key Unforgeability. Unforgeability of signing private key
(UF-SSK) assures that only the user who has the master private key can generate
a signing private key, as formulated in Definition 2.

Definition 2 (UF-SSK) . A KCRS scheme is UF-SSK secure if the probability
that the adversary wins the following game is negligible in security parameter \:

1. The challenger C generates a pair of master public/private key pair
(pkar, skar) using the public parameters pp. The master public key is given to
adversary A.

2. A queries C to obtain a sequence responses, e.qg., signing public/private key
pairs derived from (pkar, skar) and other related information.

3. A generates a signing public/private key pair (pk§, sk¥), which is different
from any of the ones obtained in the previous queries.

4. If pk% is derived from pky and matches with sk%, then A succeeds.

Signing Public Key Indistinguishability. Signing public key indistinguisha-
bility (IND-SPK) means that one cannot distinguish signing public keys gener-
ated from different master keys, thereby protecting the privacy of the signer.

Definition 3 (IND-SPK) . A KCRS scheme is IND-SPK secure if the prob-
ability that an adversary wins the following game is negligibly greater than 1/2
(with respect to security parameter \).

1. The challenger C generates a master public/private key pair (pkas, skar) using
the public parameters pp, and gives pkys to attacker A.

2. A queries C with selected auxiliary information for signing public keys derived
from pkays.
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When A finishes the query phase, C runs SPKGen on pkys to generate pk:go)
and corresponding auzxiliary information aux. C also randomly selects another

key pkg)
C randomly selects b € {0,1}, and sends (pkfgb), auzx) to A.
A guesses the value of b and outputs b.

Ifb= b, A succeeds and the game returns 1; otherwise A fails and the game
returns 0.

A KCRS Construction and Its Security Analysis

3.1 An ECDSA-Based KCRS Construction

Suppose two parties (i.e., the signer and the targeted verifier) share a secrete key
dk securely. This can be achieved through an offline channel (e.g., using public
key encryption/key encapsulation [8]).

Setup (\) — pp, where X is the security parameter and pp = (E(F), P), where
E(FF) is a selected elliptic curve on finite field F, and P is a point on E(F)
with order about A bits.

MKGen (pp) — (pku, skar), where pp = (E(F), P). This algorithm randomly

selects a positive integer s & (0,|P|) and sets (pknr, skar) = (sP, s).
SPKGen (pp, pknr) — (pks, aux). This algorithm randomly selects an integer

r & (0,]P]) and calculates (pks,auz) = (h(r - pkar)P + pka,7P), where
h() : E(F) — Zorq(py is a hash function which works as a random oracle. In
practice, h(:) can be implemented using SHA512 mod ord(P) when A\ < 512.

SSKGen (pp, pks, auz,pkys, sky) — sks. This algorithm first checks pkg ~
h(skpr - auxz)P + pkps, where auz is a point on E(F). If it passes the test,
the algorithm computes and returns skg = h(skps - aux) + skps; otherwise, it
returns skg =_1.

SKDetect (pp, sk, pka,pks,aux) — 6. This algorithm calculates pkl «
h(skar - aux)P + pkas. If pks = pky, it sets 6 < 1; otherwise, it sets 6 « 0.
SigGen (pp, sks, m, dk) — o pre. This algorithm pre-processes the message
m before signing. Specifically, it calculates m’ — Enc(m||r,dk) and generates
Om/ pks “— Stgngcpga(sks, m’), where Enc() is a secure symmetric encryption
scheme, dk is the secret key shared between the signer and the targeted
verifier, and r is the random number selected by the signer in SPKGen(). m’
is released to the public together with the signature o, pig-

SigVerify (pp,om pks,m',pks) — 6. This algorithm is the same as the
ECDSA signature verification algorithm Verifypopga- If the signature oy pig
matches m’ and pkg, it returns ¢ < 1; otherwise, it returns ¢ « 0.

LNK (pp, 0m/ pig, M, pkar, dk). This algorithm first checks that o, pig is a
valid signature of m’, and runs Dec(m', dk) to recover r. The algorithm then
computes pky — h(r-pka)P+pkas. If pkly = pksg, it sets § «— 1 (i.e., signature
Om/ pks 18 linked to pkas); otherwise, it sets 6 < 0.
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3.2 Security Analysis

Correctness of the KCRS construction can be verified by observation. Signature
unforgeability is based on the security of ECDSA, which has been proved to be
UF-CMA secure [23].

Signing Private Key Unforgeability (UF-SSK). This property is based on
the Elliptic Curve Discrete Logarithm Problem (ECDLP): Given a generator P
of an elliptic curve E, and a random point @ € (P), find r such that Q = rP.
In what follows, we first describe a simulation algorithm S that leverages A
to solve an ECDLP instance and then prove the success probability of S. In
order for A to produce a signing public/private key pair, s/he may need to see
a sequence of signing public/private key pairs derived from the same master
public/private key pair. During this procedure, we allow A to learn h(:) - P
based on his/her selection of random number r. However, we do not allow A to
query hash function h(-) directly because it will disclose the master private key
when A can query both the signing private key and the hash value. S maintains
four tables corresponding to A’s queries with selected random numbers: RJ[i],
which stores the random number A selected for the ith query of signing key
pair; Hi], which stores the scalar multiplication of the hash value and the base
point for the ith query; P[i], which stores the signing public key for the ith
query; and S[é], which stores the signing private key for the ith query. Because
A is a probabilistic polynomial-time algorithm, it can make at most N queries
before it outputs the fake signing key pair, where N is bounded by a polynomial
of A. § randomly selects an opportunity to feed the ECDLP instance to A and
hopes it will generate the fake signing key pair based on the input. Algorithm 1
describes the simulator S.

Theorem 1. The KCRS construction is UF-SSK secure under the ECDLP
assumption in the random oracle model.

Proof (sketch). In the random oracle model, A cannot distinguish the values &
provided from the values in the real system. Thus, A will produce the fake signing
key pair in Algorithm 1. Since .4 makes at most N queries and S randomly picks
an opportunity in this process to leverage A to solve the target ECDLP instance,
the probability that A decides to produce a fake signing key pair at the same time
is at least 1/N. If the target instance has been queried before, D will terminate
and fail. However, the probability of such an event is negligible in A because the
space of 1;’s is exponential in A. Denote by Fj the event that A successfully fakes
a signing key pair after querying the oracle, and F; the event that S successfully
solves the ECDLP instance. We have

1
Pr{Ey] > - Pr[Ey] — negl

where negl is the negligible probability that A queries the target ECDLP
instance. If A can compromise the UF-SSK feature with a non-negligible prob-
ability, then % Pr[Ey] — negl is non-negligible and negl is negligible. Therefore,
Pr[E4] is non-negligible, which contradicts with the ECDLP assumption. O
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Algorithm 1. ECDLP solver § using UF-SSK adversary A.

Input: The base point P on E(F); a random point @ < sP on E(F), which is the
ECDLP instance S wants to solve; the master public key pkas, a point on E(F); the
maximum number of oracle queries N.

Output: An integer s or L.

R[] 0; T[]« 0; H[] — 0; P[] < 0; S[] « 0; j < [1,N];
for i=1to N do
A selects a random number r; € Z|p|; R[i] < 7i; ide — FIND(R[ ], 74);
if i = j and A decides to generate the fake signing key pair then
if idx =0 then
H[i] — Q — pkum, P[i] < Q, which are shared with A4;
A outputs a fake s;
return s;
else
return 1;
end if
end if
if idx = 0 then
Sl < (0,P); Pli) — S[i] - P5 H[i) — Pli] — phas;
else
S[i] « S[idz]; P[i] « Plidx]; H[i] < Plidx];
end if
If A queries the scalar multiplication of the hash value and the base point, return
HI[il;
If A queries the derived signing public/private key pair, return (P[], S[i]);
end for

Signing Public Key Indistinguishability (IND-SPK). The IND-SPK secu-
rity of the KCRS construction is based on the hardness of the following variant
hashed decision Diffie-Hellman (VH-DDH) assumption, which has not been stud-
ied in the literature.

Definition 4 (VH-DDH on elliptic curve). Given a generator P of an
elliptic curve E, and three random integers u,v,z € (0,0rd(P)), VH-DDH
assumption says that (uP,vP, H(uwwP)P) and (uP,vP, H(zP)P) are computa-
tionally indistinguishable; i.e., for any probabilistic polynomial-time algorithm
D, | Pr[D(uP, vP, H(uwP)P) = 1] — Pr[D(uP,vP, H(zP)P)] = 1| is negligible in
the size of ord(P), where H is a cryptography hash function works as a random
oracle.

The standard DDH assumption assumes (uP, vP,uvP) and (uP,vP, zP) are
computationally indistinguishable. If f is a one-to-one mapping, it is easy to see
that distinguishing (uP, vP, f(uvP)P) and (uP,vP, f(2P)P) is at least as hard
as corresponding standard DDH problem; otherwise, an attacker can apply f to
the DDH instance to solve it. For the variant hashed decisional Diffie-Hellman
problem, the mapping function is a composition of a hash function and a scalar
multiplication on the elliptic curve. The scalar multiplication is a one-to-one
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mapping when the scalar belongs to (0, ord(P)), which is true when the output
size of the hash function is less than ord(P). When the scalar multiplication is
composed with the cryptography hash function that works as a random oracle,
the result function is not one-to-one any more as the hash function can have
collisions. However, the likelihood of collision is negligible, and one can still apply
the composed function to a DDH instance and solve it with high probability if
the variant hashed DDH is easy. Therefore, the variant hashed DDH problem is
at least as hard as the standard DDH problem.

Theorem 2. The KCRS construction is IND-SPK secure under the VH-DDH
assumption in the random oracle model.

Proof (sketch). The proof is to show that given an IND-SPK adversary A,
one can build an algorithm D to solve the VH-DDH problem as described in
Algorithm 2.

Algorithm 2. VH-DDH solver D leveraging IND-SPK adversary .A.
Input: Point P on E(F); VH-DDH instance (uP,vP, H(zP)P); master public key
pky = uP; the maximum number of oracle queries NV
Output: A bit b where b =1 if wvP = H(zP)P and b = 0 otherwise
i— 1 R[]« 0; H[] < 0;
while A4 wants to query for new signing public keys do
A selects and send a random point r; P to D; R[i] « r; P; idz < FIND(R][ ], 7:);
if R[i{] = vP then
return 1;
end if
if idx = 0 then
HJi & (0,0rd(P)); Sending H[i]P 4+ uP to A;
else
Sending H[idx]P + uP to A,
end if
t— 1+ 1;
end while
Q& (P); b— C(uP,(H(2P)P + uP, H(Q)P + uP),vP);
if b=b then
return 1;
else
return O0;
end if

Denote by Ej the event that the game given in Definition 3 returns 1 and
E4 the event that the game returns 1. If the input to Algorithm 2 is a valid
VH-DDH instance, we have

Pr[D(uP,vP, H(uvP)P) = 1] = Pr[Ey] — negl,



234 L. Xu et al.

where negl is the probability that A queries with vP in the challenging phase.
If the input instance is randomly generated, we have

Pr[D(uP,vP, H(zP)P) = 1] = Pr[E] — negl.

We observe that Pr[E] = 1/2 because the two signing public keys are indepen-
dently and uniformly generated and follow the same distribution. Therefore, we
have Adv(D) = |(Pr[E1] — negl) — (Pr[Eo] — negl)| = | Pr[So] — 1/2|, which is
equivalent to the advantage of A against the IND-SPK. a

4 KCRS on Blockchain

KCRS uses the blockchain as a unified information sharing and storage platform
for transactions related to digital signatures, messages/signatures, and other
kinds of relevant information. Assuming the blockchain is not controlled by the
attacker, the use of blockchain prevents an adversary from altering existing trans-
actions while allowing all participants to verify transaction validity. KCRS on
blockchain has four types of participants:

— Signer: A signer owns a private key and uses the private key to produce digital
signatures.

— Verifier: A verifier receives and verifies digital signatures generated by a
signer. The verifier needs to be convinced that a certain signer has signed
a specific message to determine his/her next step.

— Certificate Authority (CA): A CA is responsible for setting up the initial
public key certificates for the signers and verifiers.

— Miner: Miners participate in transaction verification and blockchain mainte-
nance by producing/verifying blocks.

A signer needs to generate a public/private key pair and obtain a certificate
of the public key from the CA when he/she joins the system. This key pair
serves as the master key pair and identity of the signer, but is not used for
daily signature generation and verification. When a verifier needs a signer to
sign a message, he/she first contacts the signer through an off-chain channel to
exchange information including a symmetric key that will be used to encrypt
the message in question. The signer then generates a signing public/private key
pair and signs the encrypted message as described in the algorithm SigGen and
submits the signature to the blockchain as transactions. All miners verify the
validity of the signature before embedding it into a block and storing on the
blockchain. Figure 1 summarizes the workflow of KCRS.

4.1 Data Management for KCRS on Blockchain

The blockchain stores four types of transactions: (i) certificate of master public
key pkps, which is generated by the CA and will not change frequently; (ii) sign-
ing public key pkg, which is generated by the signer based on the master private
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Master key pair Signing public key Signing private |
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Fig. 1. The workflow of KCRS on blockchain. The output of each step is stored on
the blockchain except the signing private key, and miners are responsible for validating
outputs and maintaining the blockchain.

key; (iii) transformed message, which is the ciphertext of the original message
plus the random number used to derive the signing key pair; (iv) signature,
which is generated by the signer using signing private key.

Master public key certificate, signing public key, and signature have fixed
sizes and are easy to be embedded into a block and included in the blockchain.
However, the size of a message can vary greatly, so we let KCRS on blockchain
stores the hash value of the message in a block while the message can be kept on
another storage system that is more efficient and flexible. Logically, blocks are
organized in a linear structure with a total order. In practice, a node can use a
database with a dedicated field of order information to organize all transactions,
and a user can search signatures or public keys by querying the database.

4.2 Operations of KCRS on Blockchain

Master Key Pair Initialization. We use permissioned blockchain, where each
miner knows the CA’s public key in advance. When a new user registers with
the system, he/she submits his/her master public key together with a certificate
of the public key. Each miner checks the certificate and the master public key,
and runs a consensus protocol to include the registration information in the
blockchain if it is valid.

Signing Key Pair Generation. According to the design of KCRS, a signing
key pair is only used for a single message. The signer can either pre-generate
a set of signing key pairs or wait until there is a need to sign a message. The
signing public key is submitted to miners, and they run a consensus protocol to
include it in the blockchain. The signer does not submit the random value used
in the signing key pair generation to miners but keeps it secret.

Message Preparation. The verifier and signer communicate off-chain to
exchange the message that needs to be signed and a symmetric key for encrypting
the message. The signer adds information about the public key to the message
and encrypts the result using the symmetric key. The prepared message does
not need to be sent to the miners immediately.
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Signature Verification. The signer sends the signature and message to the
miners, who run the SigVerify algorithm to check the validity of the signature.
If the signature is valid, the miners work together to include the pair to the
blockchain. Note that the signature is not for the plaintext message, but the
encrypted one, meaning that the miners do not need to see the plaintext message
in order to verify the signature. If a signature is included in the blockchain, the
verifier does not need to check the signature again. Instead, he/she only needs to
decrypt the corresponding message stored on the blockchain with the signature,
and then check whether the content is correct and the public key used to verify
the signature is derived from the correct master public key using LNK algorithm.

5 Implementation and Performance Evaluation of KCRS

We implement KCRS using Hyperledger Fabric [3]. Since Fabric has its own
PKI system, we use it to issue certificates to signers. Fabric divides the block
construction into two steps: endorsing and ordering. In the process of endors-
ing, a group of endorsers check each transaction and endorse the valid ones by
attaching their signatures. In the process of ordering, a group of orderers work
together to determine the order of the endorsed transactions and put them on
the blockchain. The default ordering in Fabric is implemented using Kafka [21],
which is very efficient when the number of orderers is relatively small. To simply
the implementation, we use a single node for the ordering service, and focus on
the effect of different endorser configurations when measuring performance. Ver-
ifiers passively listen to KCRS and can retrieve signatures from the blockchain.

We deploy a KCRS prototype in Amazon Web Service (AWS). Nodes, includ-
ing endorser nodes, are configured to utilize the t2.medium instance type, which
has 2 processing cores and 4 GB memory. We distribute the nodes in differ-
ent instances in order to reduce the bottleneck of computing resource. In this
deployment, all endorser nodes join in a same channel. We also use different
endorsement policies to manage the total number of signatures required by a
transaction. For instance, policy “AND(‘Orgl.peer’, ‘Org2.peer’)” indicates that
a transaction requires signatures from both organizations Org! and Org2.

Latency and Throughput. We evaluate the latency and throughput of the
prototype with different parameters. Latency and throughput are mainly affected
by to factors, the performance of the underlying blockchain system itself and the
performance of the cryptographic operations. We fix the number of orderer node
to one and measure the latency of per transaction. Figure 2 shows the results of
changing the number of endorser nodes. We observe that the latency increases
significantly when the number of endorsers changes from 1 to 3. This is because
compared to a single-endorsement transaction, the orderer node need more time
to process multiple endorsements. Both latency and throughput tend to level off
when the number of endorsers is greater than 5.

Storage Cost. One of the major concerns of blockchain-based applications is
the storage cost because the system has multiple copies of the blockchain and
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Fig. 2. KCRS performance: Latency is computed between the start time and the finish
time with respect to a submitting a transaction; throughput is calculated by sending
1,000 transaction simultaneously and then collecting the start time and the finish time
of the last block (if there are multiple blocks).

each of them keeps increasing. For blockchain-based KCRS, the storage cost of
master public key certificates is negligible since they are relatively stable. Most
transactions come from signatures and the generation of their signing public
keys. When KCRS uses ECDSA with 256-bit keys, the size of a signature is
512 bits. The message size varies but we can keep its hash value (instead of the
message itself) on the blockchain, the size of which is 256 bits when SHA256
is used. The auxiliary information attached to each signing public key is also
an elliptic curve point, which is 512 bits. In summary, each signature request
needs a storage of 192 bytes, and a modern computer can easily store hundreds
of billions of such transactions. When elliptic curve compressing technologies are
applied [5], the storage cost can be further reduced.

6 Conclusion

Private key exposure is one of the most devastating attacks against digital signa-
tures. Although a variety of digital signature schemes have been proposed to mit-
igate the consequences of private key exposure, the detection of private signing
key exposure has not been paid the due amount of attention. We have presented
a new digital signature management framework, dubbed KCRS, which incor-
porates the capability of key exposure detection by leveraging the blockchain
technology. We have described the formal security definition of KCRS: (i) only
the legitimate user can update key information when key exposure is detected;
(ii) only the relevant users can discover the relation between a signature and
the signer. We have evaluated the performance of KCRS on blockchain and
conducted experiments on Hyperledger Fabric. Experimental results show that
KCRS on blockchain can handle a large number of users at a reasonable cost.

Acknowledgment. This work is supported in part by AFRL Grant #FA8750-19-1-
0019 and NSF CREST Grant #1736209.



238

L. Xu et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Abdalla, M., Reyzin, L.: A new forward-secure digital signature scheme. In:

Okamoto, T. (ed.) ASTACRYPT 2000. LNCS, vol. 1976, pp. 116-129. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_10

Al-Bassam, M.: Scpki: a smart contract-based PKI and identity system. In: Pro-
ceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts,
pp. 35-40. ACM (2017)

Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for per-
missioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference,
p. 30. ACM (2018)

Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431-448. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1_28

Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., Moller, B.: Elliptic curve
cryptography (ecc) cipher suites for transport layer security (tls). Technical report
(2006)

. Chow, J., Pfaff, B., Garfinkel, T., Christopher, K., Rosenblum, M.: Understand-

ing data lifetime via whole system simulation. In: Proceedings of Usenix Security
Symposium 2004 (2004)

Chow, J., Pfaff, B., Garfinkel, T., Rosenblum, M.: Shredding your garbage: reduc-
ing data lifetime. In: Proceedings 14th USENIX Security Symposium, August 2005
Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. STAM J. Comput. 33(1),
167-226 (2003)

. Dai, W., Parker, T.P.; Jin, H., Xu, S.: Enhancing data trustworthiness via assured

digital signing. IEEE Trans. Dependable Secure Comput. 9(6), 838-851 (2012)
Ding, X., Tsudik, G., Xu, S.: Leak-free group signatures with immediate revoca-
tion. In: 24th International Conference on Distributed Computing Systems (ICDCS
2004), pp. 608-615. IEEE Computer Society (2004)

Ding, X., Tsudik, G., Xu, S.: Leak-free mediated group signatures. J. Comput.
Secur. 17(4), 489-514 (2009)

Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65-82. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_5

Dodis, Y., Katz, J., Xu, S., Yung, M.: Strong key-insulated signature schemes. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 130-144. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36288-6_10

Dodis, Y., Luo, W., Xu, S., Yung, M.: Key-insulated symmetric key cryptogra-
phy and mitigating attacks against cryptographic cloud software. In: Proceedings
ASTACCS 2012, pp. 57-58 (2012)

Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. STAM J. Comput. 17(2), 281-308 (1988)

Guan, L., Lin, J., Luo, B., Jing, J., Wang, J.: Protecting private keys against
memory disclosure attacks using hardware transactional memory. In: Proceedings
of the 2015 IEEE Symposium on Security and Privacy, SP 2015, pp. 3-19 (2015)
Haber, S., Stornetta, W.S.: How to time-stamp a digital document. In: Menezes,
A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 437-455. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3_32


https://doi.org/10.1007/3-540-44448-3_10
https://doi.org/10.1007/3-540-48405-1_28
https://doi.org/10.1007/3-540-46035-7_5
https://doi.org/10.1007/3-540-36288-6_10
https://doi.org/10.1007/3-540-38424-3_32

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

KCRS: A Blockchain-Based Key Compromise Resilient Signature System 239

Harrison, K., Xu, S.: Protecting cryptographic keys from memory disclosure
attacks. In: The 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2007, 25—28 June 2007, Edinburgh, UK, Proceedings,
pp. 137-143 (2007)

Itkis, G., Reyzin, L.: SiBIR: signer-base intrusion-resilient signatures. In: Yung, M.
(ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 499-514. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45708-9_32

Krawczyk, H.: Simple forward-secure signatures from any signature scheme. In:
ACM Conference on Computer and Communications Security, pp. 108-115 (2000)
Kreps, J., Narkhede, N.; Rao, J., et al.: Kafka: a distributed messaging system for
log processing. In: Proceedings of the NetDB, pp. 1-7 (2011)

Laurie, B., Langley, A., Kasper, E.: Certificate transparency. Technical report
(2013)

Locke, G., Gallagher, P.: Fips pub 186-3: digital signature standard (dss). Federal
Information Processing Standards Publication 3, 186-3 (2009)

Loscocco, P., Smalley, S., Muckelbauer, P., Taylor, R., Turner, S., Farrell, J.: The
inevitability of failure: the flawed assumption of security in modern computing
environments. In: Proceedings 21st National Information Systems Security Con-
ference (NISSC 1998) (1998)

Orman, H.: Blockchain: the emperors new PKI? IEEE Internet Comput. 22(2),
23-28 (2018)

Parker, T.P., Xu, S.: A method for safekeeping cryptographic keys from mem-
ory disclosure attacks. In: First International Conference on Trusted Systems
(INTRUST 2009), pp. 39-59 (2009)

Shamir, A., van Someren, N.: Playing ‘Hide and Seek’ with stored keys. In:
Franklin, M. (ed.) FC 1999. LNCS, vol. 1648, pp. 118-124. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48390-X_9

Xu, S., Li, X., Parker, T.P.: Exploiting social networks for threshold signing: attack-
resilience vs. availability. In: Proceedings of ASTACCS 2008, pp. 325-336 (2008)
Xu, S., Li, X., Parker, T.P., Wang, X.: Exploiting trust-based social networks for
distributed protection of sensitive data. IEEE Trans. Inf. Forensics Secur. 6(1),
39-52 (2011)

Xu, S., Sandhu, R.: A scalable and secure cryptographic service. In: Barker, S.,
Ahn, G.-J. (eds.) DBSec 2007. LNCS, vol. 4602, pp. 144-160. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73538-0-12

Xu, S., Yung, M.: Expecting the unexpected: towards robust credential infrastruc-
ture. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 201-221.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03549-4_12


https://doi.org/10.1007/3-540-45708-9_32
https://doi.org/10.1007/3-540-48390-X_9
https://doi.org/10.1007/978-3-540-73538-0_12
https://doi.org/10.1007/978-3-642-03549-4_12

	KCRS: A Blockchain-Based Key Compromise Resilient Signature System
	1 Introduction
	2 The KCRS Framework and Security Model
	2.1 The KCRS Framework
	2.2 Security Definitions of KCRS

	3 A KCRS Construction and Its Security Analysis
	3.1 An ECDSA-Based KCRS Construction
	3.2 Security Analysis

	4 KCRS on Blockchain
	4.1 Data Management for KCRS on Blockchain
	4.2 Operations of KCRS on Blockchain

	5 Implementation and Performance Evaluation of KCRS
	6 Conclusion
	References




